Triode mercury vapour thyratron with negative/positive control characteristics.

This data should be read in conjunction with DEFINITIONS AND GENERAL OPERATIONAL RECOMMENDATIONS—THYRATRONS, preceding this section of the handbook.

LIMITING VALUES (absolute ratings, not design centre)

It is important that these limits are never exceeded and such variations as mains fluctuations, component tolerances and switching surges must be taken into account in arriving at the actual valve operating conditions.

Continuous duty

Max. peak anode voltage				
Inverse			2.5	kV
Forward			1.5	kV
Max. cathode current				
Peak	160	200	*300	A
Average	25	20	*40	A
†R.M.S.	60	60	*100	A
(At max. averaging time) Surge (fault protection	15	15	(1 cycle)	s
max. duration 0.1s) Condensed mercury	2500	2500	2500	Α
	to 75	35 to 75	40 to 75	°C

Recommended condensed mercury temperature 60°C during operation.

Max. negative grid voltage		
Before conduction	-300	٧
During conduction	-10	٧
Max. average positive grid current		
(Anode voltage more positive than -10V)	250	mA
Max. peak positive grid current		
(Anode voltage more positive than -10V)	1.0	Α
Max. peak positive grid current		
(Anode voltage more negative than -10V)	100	mA
Max. grid resistor	20	kΩ
(Recommended value)	10	kΩ

^{*}Permissible overload for max. duration of 5s once in any 5min operating period.

[†]Under delayed firing conditions.

Triode mercury vapour thyratron with negative/positive control characteristics.

Additional data for a.c. and welder operation (two valves in inverse parallel, firing over complete cycle)

Max. peak anode voltage				
Forward			750	٧
Inverse			750	٧
Duty cycle	10	50	100	%
Max. cathode current				
Peak (per valve)	285	156	78	Α
Average (per valve)	9.0	25	25	A
R.M.S. (total)	200	110	55	A
Max. averaging time	5.0	5.0	15	s
Condensed mercury tempera	ture range		40 to 80	°C

HEATING UP TIME

The preferred minimum value of the total valve heating up time can be obtained from the heating and cooling curve on page 5. This shows how the condensed mercury temperature rises above ambient temperature from the instant of switching on the heater supply.

Under normal conditions however, cathode current may be drawn when the condensed mercury temperature is approximately within 7° C of the minimum quoted value. (See page 6 and also appropriate section of 'General operational recommendations—thyratrons').

During long shut down periods, i.e. overnight, the heater supply may be lowered to 60 to 80% of normal instead of being switched off. This greatly reduces the minimum delay required after restoring the heater supply to normal. The total heating up time under this duty can be obtained from the curve on page 6.

Minimum cathode heating time

10 min

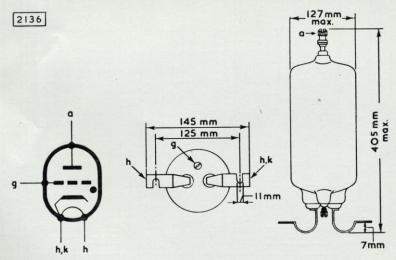
IGNITION CONDITIONS

A positive grid current of at least 3mA is needed to ensure reliable firing. If a sinusoidal control grid voltage is used it should have a minimum value of $60V_{\rm r.m.s.}$

XG2-25

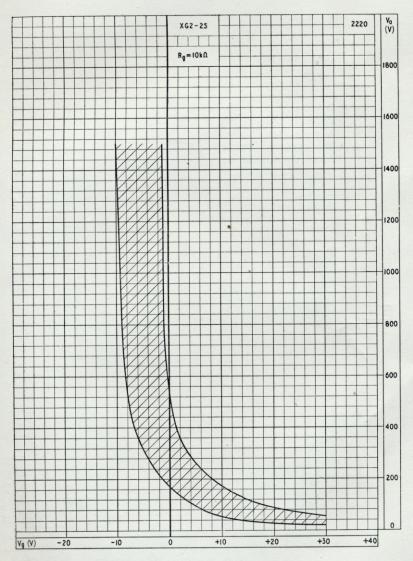
Triode mercury vapour thyratron with negative/positive control characteristics.

CHARACTERISTICS


Electrical

Heater voltage	5.0	٧
Heater current at 5.0V		
Average	25	A
Maximum	27.5	Α
Deionisation time (approx.)	1000	us
Ionisation time (approx.)	10	us
Anode voltage drop	10	V
Max. operating frequency	150	c/s
Anode-to-grid capacitance	15	pF
Grid-to-cathode capacitance	60	pF

Mechanical

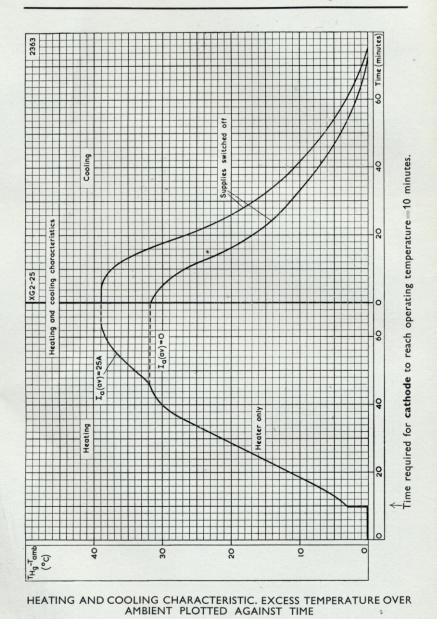

Type of cooling	convection	on
Max. net weight	{ 1.6 3.5	kg Ib
M	V	

Mounting position Vertical, base down The valve should only be secured by the heater lugs and the anode connector should be flexible.

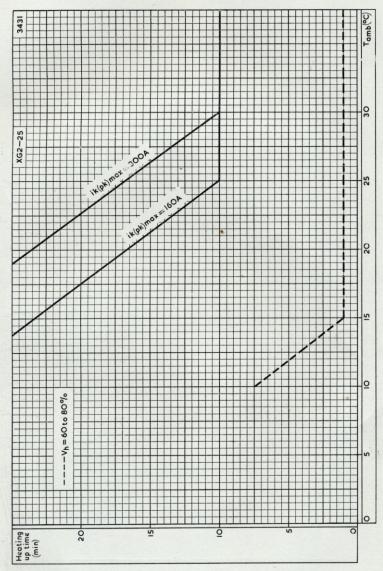
The h,k terminal is marked with a red dot.

Triode mercury vapour thyratron with negative/positive control characteristic.

CONTROL CHARACTERISTIC



ISSUE 2


XG2-25

XG2-25 1256-5

Triode mercury vapour thyratron with negative/positive control characteristic.

Triode mercury vapour thyratron with negative/positive control characteristic.

TOTAL HEATING-UP TIME PLOTTED AGAINST AMBIENT TEMPERATURE

