Specification AD/CV4051	SECURITY						
Issue No. 3 dated 20.7.62. To be read in conjunction with K1001 BS.448 and BS.1409	Specification Unclassified	Valve Unclassified					

→ Indicates a change

TYPE OF VALVE: - Reliable D.C. Sta Double Triode wit flexible leads	MARKING K1001/4							
CATHODE: - Indirectly heated ENVELOPE: - Glass PROTOTYPE: - VX7115	BASE B9A/F BS.448							
RATINGS (All limiting values are absolu	CONNECTIONS							
Heater Voltage (V) Heater Current (A) Heater Voltage (V) Heater Current (A) Max. Anode Voltage (V) Max. Anode Dissipation (W) Anode Current (mA) Mutual Conductance (mA/V) Amplification Factor Bulb Temperature (Max.) (C) Max. Altitude (ft.)	6.3 0.6 12.6 0.3 300 1.0 1.5 1.3 31 120 60,000	D	Pin 1 2 3 4 5 6 7 8 9	Elect Anode Grid Cathode Heater Heater Anode Grid Cathode Heater CT	arode a" g" k" h h h a' g' k'			
Max. Acceleration (continuous operation) (g) Max. Shock (g)	2.5 500	A,D A,D	Dime	See K1001/		Max.		
CAPACITANCES (p. Ca, a" Ca, g C in C out	.46 1.9 2.2 2.5	4444	B. D: D. Le	eated Height Lameter ength of Leads MOUNTING	19 38.0	49 22.2 - <u>N</u>		

NOTES

- A. This valve is specifically intended for D.C. amplifier operation in a cathode coupled circuit. The limit stability performance is as in test in Group F. Some improvement on this figure will generally be obtained particularly after a period of life. This assumes a heater voltage stability of at least 0.5%. The stability against changes of heater voltage is about 1 mV for a heater change of 1.5% over a period of 10 hours.
- B. Operated with heaters connected in parallel.
- C. Operated with heaters connected in series.
- D. The rated stability is the drift between grids over a 10 hour period.

 Vibration and shock have an adverse effect on stability and should be avoided as far as possible. Shelf life may have an adverse effect on stability but the valve should become stable in a few hours, running under rated conditions.
- E. For rated stability (max. variation) tolerance on heater voltage should be 0.5%.
- F. Measured at Va = 150V, Vg1 = -3.75V.
 - G. Measured in a 1.0 Mc/s bridge in a fully shielded socket with an external screen

To be performed in addition to those applicable in K1001.

Tests are to be performed in the specified order unless otherwise agreed with the Inspecting Authority.

Vhk (uF) 2000 (V) 0 Note 1

E1 001	TEST	TEST	AQL	Insp.	Svm -			UNITS					
		CONDITIONS	%	Level		Min.	LAL	Bog.	UAL	MAX	ALD		
	Group A												-
7.1	Glass Strain.	No voltages	6.5	I									-
	Insulation.	Vg-all = -100V		100%	R	100	-	-	-	-	-	Meg-	-
		Va-all = -300V		100%	R	100	-	-	-	-	-	Meg-	-
	Group B	Combined AQL / Note 2	1.0										
	Heater Current Heater/Cathode Leakage	Note 3	0.65	11	Ih	0.275	-	0.300	-	0.325	s' -	A	· Mariana
	Current	Vhk = +100V	0.65	II	Ihk	-	-	-	! -	10	-	ALΙ	-
	Anode Current		0.65	II	Ia	1.1	-	1.4	-	1.7	-	m.A.	1
				V 2	Ia	-	1.29		1.51	-	0.25	mA	
	Grid Current	Rg=500 k-ohms	0.65	II	Ig1	i _	_	_	-	0.05	_	ΔΩA	-
	Mutual Conduct-						•	4.05	1	i	;	i '	
	ance Mutual Conduct-		0.65	II	gm	1.0	-	1.25	-	1.5	-	mA/V	
	ance			₹2	gm	То	be add	ed lat	er			mA/V	-
	Group C	Combined AQL	6.5										-
	Change in Mutual	Note 4							1		1		
	Conductance	Vh=11.4V	2.5	I	∆gm	-	-	-	-	15	-	%	
	Cut-off	Vg1 = -10V	2.5	I	Ia	-	-	-	-	20	-	μА	
11.1	Vibration Noise	Va(b) = 250V RL = 50 k-ohms	2.5		VaAc	-		_		7	-	mV r.m.s.	
		Notes 3 and 5				İ			1				
	Difference in Anode Current between triodes		2 5	т	\ \ \ \ T=				And the second statement of the second secon	0.05			
	between triodes		2.5	I	ΔIa	-	-	-	-	0.25	-	mA.	

CV4051/3/2.

CV4051

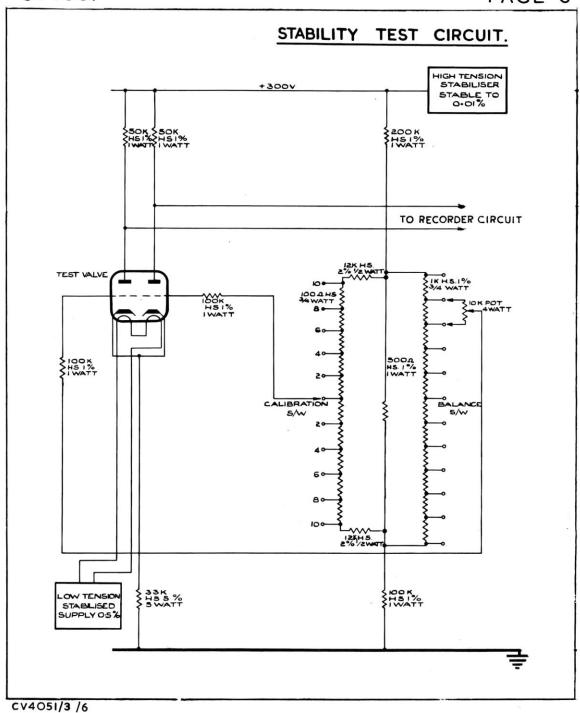
1001	TEST	троп	AQL	Insp.	Sym-		LIMITS					
.1001	TEST	TEST CONDITIONS	AJL %	Level		Min.	LAL	Bog.	UAL	MAX	ALD	UNITS
	Group D Capacitances Amplification	Measured on a 1 Mc/s bridge in a fully screened socket with external shield connected to cathode of section under test	6.5	IA	Ca'-a" Ca-g Cin Cout	1.4 1.7 1.5	-	0.46 1.9 2.2 2.5	1111	1.0 2.4 2.7 3.0		pF pF pF pF
	Factor		0.9			20		יכ		٥٥		
11. 2	Group E Resonance Search	Va(b) = 250V RL=50 k2 Frequency= 25-1000 c/s	2.5	IC	VaAC	-	-	-		25 ქი პმ გმათიი	-	шV
11.3	Fatigue	Frequency= 170 c/s Min.Peak Acceler- ation = 5g Duration= 3x23 hrs. Vh=12.6V Switched 1 min. on 3 mins. off Va = 0		IA								
	POST FATIGUE TESTS Vibration Noise	Va(b) = 250V RL=50 kΩ Notes 3 & 5	A CONTRACT C		VaAC	-	-	-	_	20	_	mV r.m.s.
	Heater- Leakage thode Current Grid	Note 3 Vhk = +100V			Ihk	-	-	-	-	15	-	,uA
11.4	Shock	Rg1 = 500 kΩ Hammer Angle = 300 No voltages	2.5	IA	Ig1	-	-	-	-	0.07	-	<i>J</i> u A

CV4051/3/3

CV4051

	K1 001				C V 4 O 3 1												
- 1		TEST	TEST	AQL	Insp.	Sym-				IMITS			UNITS				
	161001	1851	CONDITIONS	%	Level	bol	MIN	LAL	Bog	UAL	MAX	ALD					
7		POST SHOCK TESTS Vibration Noise	Va(b)=250V, RL = 50 kΩ Notes 3 & 5	2.5		Va AC	1				20		r.m.v.				
	8	Heater- Cathode Leakage Current Grid Current	Note 3 Vhk = <u>#1</u> 00V Rg1 = 500 k2	2.5		Ihk Ig1	-	-	-	-	15 0.07	-	ي د ر م در				
	A V1/5	Group F Idfe	Va = 150V Rg1 = 1.5M2 Rk = 2.7 k2 Vhk = Heater connected to cathode through 47 k2														
\rightarrow		Stability					MIN	LAL	Med- ian	Semi- decile	MAX	ALD					
		<u>Test</u> 0-10 hrs.	Notes 6, 7, 9,		V 2	Δ V g	-	_	-	20	-	-	w.V				
		9 -1 0 hrs	Notes 6, 8, 9,		V 2	∆Vg	-	-	-	4	-	-	mV				
		0-1000 hrs			Q/A on 6 sam- ples	∆Vg				Recor	đ						
							MIN	LAL	Bog	UAL	MAX	ALD					
		End	Combined AQL	10.0	IA			8									
→		Points Inoperative Heater Curr Reverse Gr	cent	2.5 2.5			0.275	-	-	_	0.325	-	A				
			id Rg1 = 500 k2	2.5		Ig1	-	-	-	-	0.1	-	μA				
→		Average Cha in Mutual Conductant Change in	-			Δgm	-	-	-	-	15	-	%				
→		Mutual Conductand Difference	in			∆ g nnn				 Record 			%				
		Δgm between triodes	en 	6.5		∆ grad ∆ gran	-	-	-	-	7.5	-	%				

The State of the same of the s


CV4051/3/4

K1 001	TEST	TEST	AQL				UNITS						
		CONDITIONS	%	Level	bol	MIN	LAL	Bog	UAL	MAX	ALI		
	Insulation	Va-all = -300V	2.5		R	50	-	-	-	-	-	MΩ	7
		Vg-all = -100V	2.5		R	50	-	-	-	-	-	MΩ	
	Life Test End Points 1000 hrs.	Combined AQL	10.0										١
	Insulation	Va-all = -300V	6.5		R	50	-	-	-	-	-	MΩ	1
		Vg-all =-100V	6.5		R	50	-	-	-	-	-	¥º	
	Change in Mutual Conductance		6.5		Δgm			Rec	ord		-	%	4
	Difference in Agm between triodes		6.5		△	_	_	_	_	_	19	%	-
	Difference in Anode Current between Anodes		6.5		Δgm." ΔIa.	-	-	-	-	0.5		m.A.	4
AIX/ 2.5	Group G Electrical re- test after 28 days	=		100%									
	Inoperatives	i	0.5										
	Grid Current	Rg = 500 kΩ	0.5		Ig ₁	-	-	-	-	1,0	-	/uA	+

NOTES

- Test each section separately with the elements of the opposite section connected to the cathode of the section under test.
- At least one test in this group shall be carried out with the heaters connected in parallel to a 6.3 volt supply.
- Connect the two sections in parallel.
- 4. The change in the mutual conductance shall be:- gm at 12.6 Vh gm at 11.4 Vh x 100% gm at 12.6 Vh.
- Connect cathodes together and connect to earth through Rk = 680 ohms, ck = 1000 uF.
 Connect grids to earth. Parasitic suppressors of 50 ohms maximum permissible.
- The stability of a valve is defined as the change in the difference between the grid voltages required to maintain equal anode currents in each triode over a period of time.
- 7. This test shall be carried out in the specified circuit detailed on Page 6, and the drift measured over 10 hours. The valve shall be operated in the specified circuit for a minimum of 30 minutes and a maximum of 60 minutes before the test period commences.
- This test shall be carried out in the circuit referred to in Note 7 and the drift measured over the last hour of the 10 hour stability test period.
- 9. For all stability tests the stability of heater supply must be better than + 0.5%
- 10. The figures refer to the total excursion between extremes of drift.
- 11. Any valves from the sample tested on the 10 hour stability tests which fail to meet the specified semi-devile limits may, at the discretion of the manufacturer and the Inspecting Officer, be subjected to a further 10 hour stability test period. The stability figures so obtained may be substituted for the initial results in assessing the overall test result. No further aging is permitted before this second test period.

CV4051/3/5

