

LONG LIFE DOUBLE TRIODE

BRIEF DATA

A double triode, with separate cathodes, for use in applications where long life and close control of characteristics are essential. The valve will maintain its emission capabilities after long periods of operation under cut-off conditions.

The A2900 is a commercial equivalent of the CV6091.

HEATER

Heater voltage	Series 12.6 0.2	Para 6.3 0.4	3 V
MAXIMUM RATINGS (Absolute)			
DC anode supply voltage		!	550 V
DC anode voltage		!	500 V
DC anode current per section			12 mA
Anode dissipation per section			3.5 W
Total anode dissipation			6.0 W
Negative grid voltage			100 V
Positive grid voltage			0 V
Grid-cathode circuit resistance (cathode bia	s)		3 MΩ
Grid-cathode circuit resistance (fixed bias)			1.5 MΩ
Heater-cathode voltage (heater positive) .			100 V
Heater-cathode voltage (heater negative) .			250 V
Bulb temperature			180 °C
CAPACITANCES (Measured on a cold unso	reened va	lve)	

c _{g*k'h} : 3pF c _{g"-k"h} : 3pF	c _{e'k'h} : 0.32 pF c _{a"k"h} : 0.23 pF	c _{a'-g'} : 2.6 pF c _{a''-g''} : 2.6 pF
c _{a'-a''} : 0.7 pF	c _{e'-g''} : 0.08 pF	c _{e"-g'} : 0.11 pF
c _{h-k+all} : 9.3 pF		

A member of the GEC Group of Companies © 1977 The M-O Valve Co. Ltd.

December 1977

CHARACTERISTICS: INITIAL SPREADS

		Min	Mean	Max	
* I_h (at $V_h = 12.6$)		0.19	0.20	0.21	Α
$*I_{h-(k'+k'')}$ (at $V_{h-(k'+k'')} = \pm 100 \text{ V}$)		_	_	5	μΑ

The following apply to each triode section measured separately at V_b = 250 V, R_k = 200 Ω (by-passed), both sections operating during the measurements.

	Min	Mean	Max	
l_a	8.4	10.0	11.6	mA
*la difference between sections	_	_	1.25	mΑ
$-I_g$	-	_	0.12	μΑ
$g_m $	5.3	6.2	7.1	mA/V
*g _m difference between sections	_	_	1.0	mA/V
$^*\mu$	52	62	72	_
$t - V_g$ for $I_a = 10 \mu\text{A}$	_	_	12.5	V

^{*}Expected spreads based on sample tests.

LIFE PERFORMANCE

The average life expectancy of the A2900 is at least 10000 hours. In order to obtain maximum life the valve must be operated within the ratings given on page 1, the environment must be a static one and the valve should be switched not more than 12 times in each 24 hours.

A valve is considered to have reached the end of life when it is either inoperative or one or more of its characteristics have reached the following values:-

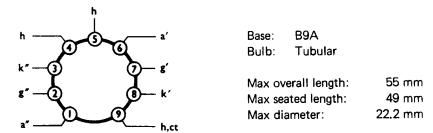
DC anode current (min) , .						8	mΑ
Negative dc grid current (max)						0.15	μ A
Mutual conductance (min)				_		4.75	mA/V

measured at $V_b = 250 \text{ V}$ and $R_k = 200 \Omega$.

[†]Tail measurement, with grid bias applied to section under test only.

PULSE OPERATION

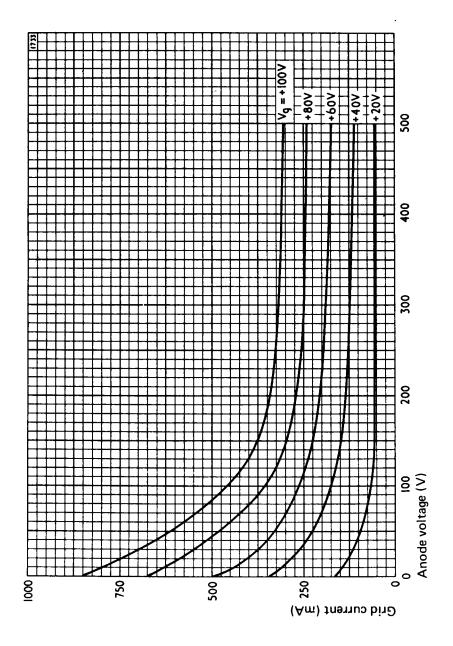
Pulse operation is not covered by the foregoing life expectancy information. However the A2900 is useful in pulse applications where its closely controlled characteristics are an advantage. The following additional maximum ratings apply:

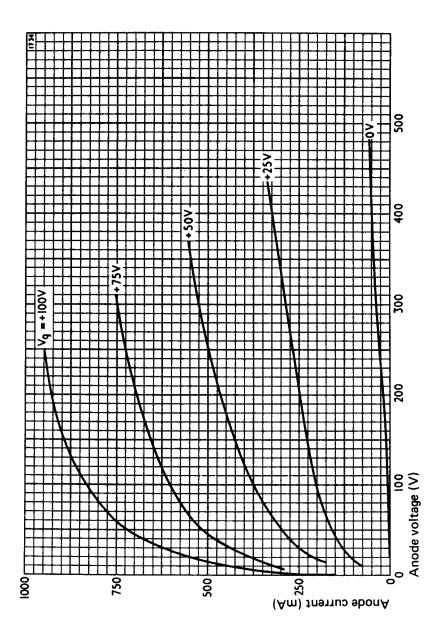

Peak anode voltage	 1000	V
DC anode-grid voltage	 . 600	V
Peak cathode current per section	 . 750	mΑ
Negative peak grid voltage	 . 200	V
Positive peak grid voltage	 . 100	V
Grid dissipation per section	 . 0.25	W
Pulse duration	 . 5	μs

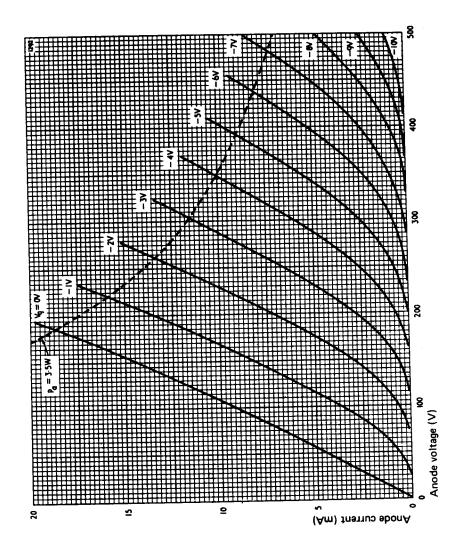
INSTALLATION

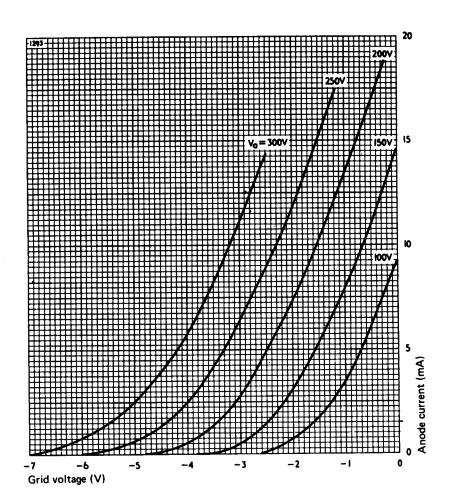
The valve may be mounted in any position. If horizontal, the major axes of the grids should be vertical.

The A2900 is not intended for applications which are critical with regard to microphony.


BASE CONNECTIONS AND VALVE DIMENSIONS




Viewed from underside of base.


Whilst M-OV has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice.

M-OV accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

