Specification MAP/CV276/Issue 3	SECURITY			
Dated 19.1.49 To be read in conjunction with	Specification	Valve		
K1001 ignoring clauses: 5.2, 5.3.	RESTRICTED	UNCLASSIFIED		

TYPE OF VALVE - Dwarf Tetr (Aligned g CATHODE - Indirectly ENVELOPE - Glass-unme	rids) heated	MARKING See K. 1001/4 PACKING See K. 1005				
<u>RATING</u> Heater Voltage	(v)	6,3	Note	BASE I.O.		
Heater Current	(A)	0.9		Pin	Electrode	
Series Modulator Max. Anode Voltage Max. Anode Dissipation Max. Screen Dissipation Break Modulator Max. Peak Anode Voltage Max. Anode Dissipation Max. Screen Voltage	(kV) (W) (W) (kV) (W) (V)	3.0 5.0 1.0 10.0 5.0 550		1 2 3 4 5 6 7 8 Side Contact	No connection Heater No connection Screen grid Control grid No connection Heater Cathode Anode	
Max. Screen Dissipation Max. Negative Grid Bias Max. Grid to Screen Vol- tage Max. Peak Cathode Current Mutual Conductance	(W) (V) (kV) (A) (mA/V)	1.0 500 1.0 1.6 4.4	A B	See K.	UG SIDE CAP . 1001/AI/D5. 2 DIMENSIONS rawing on page 3.	

NOTES

- A: With pulse length not exceeding 20 μ secs.
- B: With $Va = Vg2 = 200V_{\bullet}$, $Ia = 25mA_{\bullet}$
- C: The valve may be mounted horizontally only if the side contact is also horizontal, i.e. the major axis of the grids must be vertical.

CV276

TESTS

To be performed in addition to those applicable in K. 1001.

Test Conditions				ns	Test		Limits		No.
					Min.	Max.	Tes ted		
.Vh	Va	Vg2	Vgl	Ia(mA)					
6.3	0	0	0	0	Ih	(A)	0,8	1.0	100% or S
6.3	200	200	-	25	Ig2	(mA)	1	4.0	100% or S
6.3	200	200	-	25	Reverse Igl	(µA)	-	1.0	100%
6.3	200	200	-60	-	Reverse Igl	(µA)	-	7.0	100%
e 6.3 Cathode 150V. positive to heater.			Ic	(μ A)	-	40	100%		
f 6.3 500 500 40 max. Vgl shall be applied as an intermittent pulse of 10 to 12 μsecs. duration with a 400:1 off: on ratio. In measurement is to be made when Vgl is not more than 40V. positive.		Ia	(A)	1.6	-	100%			
6.3	5.0 kV.	500		0.5	processed unti withstand the conditions for of one minute flashing. One conditions hav met they need	l it can stated a period without the the been not be		-130	100%
	6.3 6.3 6.3 6.3 Vgl inte to l with Ia m made than	Vh	Vh Va Vg2	Vh	Vh Va Vg2 Vg1 Ia(mA) 6.3 0 0 0 0 6.3 200 200 - 25 6.3 200 200 - 25 6.3 200 200 -60 - 6.3 500 500 40 - wax. Vgl shall be applied as an intermittent pulse of 10 to 12 μsecs. duration with a 400:1 off:on ratio. Ia measurement is to be made when Vgl is not more than 40V. positive. 6.3 5.0 500 - 0.5	Vh	Vh	Min. Va Vg2 Vg1 Ia(mA)	Vh Va Vg2 Vg1 Ia(mA) 6.3 0 0 0 Ih (A) 0.8 1.0 6.3 200 200 - 25 Ig2 (mA) - 4.0 6.3 200 200 - 25 Reverse Ig1 (μA) - 1.0 6.3 200 200 - 0 - Reverse Ig1 (μA) - 7.0 6.3 200 200 - - Reverse Ig1 (μA) - 7.0 6.3 500 500 40 - Ia (μA) - 40 to 12 μsecs. duration with a 400:1 officn ratio. Ia measurement is to be made when Vg1 is not more than 400:1 officn ratio. In the valve shall be processed until it can withstand the stated conditions for a period of one minute without flashing. Once the conditions have been met they need not be repeated for acceptance testing.

